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ABSTRACT

Let Ω be an open bounded domain in R
N (N ≥ 3) and 2∗ = 2N

N−2
. We are

concerned with two kinds of critical elliptic problems. The first one is

(∗) −∆u − µ
u

|x|2
= λu + |u|m−2u + θ|u|2

∗
−2u u ∈ H1

0 (Ω),

where 0 ∈ Ω, 0 < µ < (N−2
2

)2, 2 < m < 2∗ and λ > 0. By using

the fountain theorem and concentration estimates, if N ≥ 7 and θ > 0,

we establish the existence of infinitely many solutions for the following

regularization of (∗) with small number ǫ > 0

−∆u − µ
u

|x|2 + ǫ
= λu + |u|m−2u + θ|u|2

∗
−2u u ∈ H1

0 (Ω).

Then if θ > 0 is suitably small, we obtain many solutions for problem (∗)

by taking the process of approximation.

The second problem is

−∆u = |u|2
∗
−2u + t|u|q−1u u ∈ H1

0 (Ω),

where q ∈ (0, 1), t > 0. By using similar methods as in (∗), we prove that

if N ≥ 7, 4
N−2

< q < 1 and t > 0, there exist infinitely many solutions

with positive energy. In particular, we give a positive answer to one open

problem proposed by Ambrosetti, Brezis and Cerami [1].
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1. Introduction and main results

Let Ω be a bounded domain in R
N (N ≥ 3) with smooth boundary ∂Ω, 0 ∈ Ω.

We are concerned with the following problem

(1.1)







−∆u − µ u
|x|2 = λu + |u|m−2u + θ|u|2∗−2u in Ω,

u = 0 on ∂Ω,

where 0 < µ < µ̄ = ((N−2)/2)2, 2 < m < 2∗, θ > 0, λ > 0 and 2∗ = 2N/(N−2)

is the critical exponent for the embedding H1
0 (Ω) →֒ Lt(Ω).

Definition 1.1: u ∈ H1
0 (Ω) is said to be a weak solution of problem (1.1) if u

satisfies
∫

Ω

(

∇u ·∇v−µ
uv

|x|2 −λuv−|u|m−2uv−θ|u|2∗−2uv
)

dx = 0 for all v ∈ H1
0 (Ω).

By standard elliptic regularity arguments, we have u∈C2(Ω\{0})∩C1(Ω\{0}).
It is well-known that the nontrivial solutions of problem (1.1) are equivalent to

the nonzero critical points of the energy functional

Iθ,0(u) =
1

2

∫

Ω

(

|∇u|2 − µ|u|2
|x|2 − λ|u|2

)

dx − 1

m

∫

Ω

|u|mdx − θ

2∗

∫

Ω

|u|2∗

dx

u ∈ H1
0 (Ω).

There are many papers which are significantly related with problem (1.1).

For examples, S. Terracini [20] considered the nonlinear problem in R
N\{0}:

−∆u = a(x/|x|)u/|x|2 + f(x, u),

where a ∈ C1(SN−1, R) and f is a superlinear function. In [20], the diverging

Palais–Smale sequences are analyzed, multiplicity result and the uniqueness

(modulo rescaling) of positive solutions are established by means of variational

methods together with sophisticated versions of the moving plane method of

Aleksandrov.

E. Jannelli [16] considered the following problem:

(1.2)







−∆u − µ u
|x|2 = λu + |u|2∗−2u in Ω,

u = 0 on ∂Ω.

and established Brezis–Nirenberg type results. D. Cao and P. Han [8] proved

that if µ ∈ [0, µ̄ − (N+2
N )2), then problem (1.2) admits a nontrivial solution for
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all λ > 0. A. Ferrero and F. Gazzola [13] considered a more general form of (1.2)

and obtained some results. Replacing the nonlinearities in (1.1) with f(x, u)

(here f(x, ·) is superlinear at zero and subcritical at infinity), M. Schechter

and W. Zou [18] proved the existence of infinitely many sign-changing solutions

under some conditions. Other relevant papers on this matter see [6, 9, 10, 12, 15]

and the references cited therein.

One important question on problem (1.1) is that for any µ ∈ (0, µ̄), whether

there exist infinitely many solutions of (1.1) with every λ > 0. As far as we

know, there are little results on this question. In this paper, we prove that if

θ > 0 is suitably small, problem (1.1) has many solutions.

Let X be a Banach space. The functional J ∈ C1(X, R) is said to satisfy the

(P.S.)c condition if any sequence {un} ⊂ X such that as n → ∞

J(un) → c, dJ(un) → 0 strongly in X∗

contains a subsequence converging in X to a critical point of J .

Note that the embedding H1
0 (Ω) →֒ L2∗

(Ω) is not compact, which leads to

that the functional Iθ,0 does not satisfy (P.S.)c condition for any c > 0. Since

we are only interested in solutions with positive energy, fountain theorem and

its dual theorem (see [4, 21]) are not directly applicable to the case of (1.1).

G. Devillanova and S. Solimini [11] recently considered problem (1.2) with

µ = 0 and obtained infinitely many solutions for any λ > 0. Two important

methods employed in [11] are concentration estimates and the lower bound of the

augmented Morse index on min-max points (see [3]), which seem not applicable

to problem (1.1). Since for µ ∈ (0, µ̄), nontrivial solutions of problem (1.1)

have singularity at the origin (see Theorem 1.1 below), we cannot establish the

uniform bound through concentration estimates and the lower bound of the

augmented Morse index for solutions of (1.1) as in [11]. In order to overcome

these difficulties, we have to look for other methods to deal with problem (1.1).

The first result of this paper is on the asymptotic behavior at the origin for

nontrivial solutions of the following problem with small number ǫ ≥ 0, θ > 0

(1.3)







−∆u − µ u
|x|2+ǫ = λu + |u|m−2u + θ|u|p−2u in Ω,

u = 0 on∂Ω,

where p ∈ [2, 2∗]. That is,
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Theorem 1.1: Assume that N ≥ 3, p ∈ [2, 2∗], m ∈ (2, 2∗), µ ∈ (0, µ̄), θ > 0

and λ > 0. If each solution uθ,ǫ ∈ H1
0 (Ω) of problem (1.3) with ǫ > 0 satisfies

that θ1/2∗‖uθ,ǫ‖L2∗ (Ω) + ‖uθ,ǫ‖Lm(Ω) ≤ K (independent of θ, ǫ). Then there

exists θK > 0 such that for any θ ∈ (0, θK)

(1.4) |uθ,ǫ(x)| ≤ C|x|−
√

µ̄+
√

µ̄−µ for all x ∈ Ω\{0},

where the constant C = C(K) does not depend on θ, ǫ.

Especially, each solution uθ,0 of (1.3) with ǫ = 0 satisfies

(1.5) |uθ,0(x)| ≤ C|x|−
√

µ̄+
√

µ̄−µ for all x ∈ Ω\{0}.

Furthermore, if uθ,0 is positive, then there exists ρ0 > 0 satisfying Bρ0(0) ⊂ Ω,

and c0 > 0 such that

(1.6) uθ,0(x) ≥ c0|x|−
√

µ̄+
√

µ̄−µ for all x ∈ Bρ0(0)\{0}.

Remark 1.2: We do not know if θ > 0 is large, whether the constant C in (1.4)

depends on ǫ, because our method fails. In addition, it follows from Theorem 1.1

that if ǫ = 0, it is impossible to obtain the uniform L∞-bound for the nontrivial

solutions of problem (1.3) as in [11].

Theorem 1.3: Assume that N ≥ 7, m ∈ (2, 2∗), µ ∈ (0, µ̄) and λ > 0. Then for

any given positive integer L, there exists θL > 0 such that for every θ ∈ (0, θL),

problem (1.1) admits at least L different solutions.

In this paper, we consider another problem with concave and convex nonlin-

earities:

(1.7)







−∆u = t|u|q−1u + |u|2∗−2u in Ω,

u = 0 on∂Ω,

where q ∈ (0, 1), t > 0.

In recent years, people also have paid much attention to problem (1.7) and

obtained many important and interesting results. A. Ambrosetti, H. Brezis and

G. Cerami [1] proposed one open problem on (1.7): whether problem (1.7) has

infinitely many solutions with positive energy for t > 0 small enough. Using the

similar approaches in [11], we establish the existence of infinitely many solutions

for problem (1.7), which gives a partial positive answer to this open problem

proposed in [1]. More presisely,



Vol. 164, 2008 SEMILINEAR ELLIPTIC EQUATIONS 129

Theorem 1.4: Let t > 0 be fixed, N ≥ 7, 4/(N − 2) < q < 1. Then problem

(1.7) admits infinitely many solutions with positive energy.

Remark 1.5: In Theorems 1.3, 1.4, we restrict the dimension N ≥ 7, which

seems reasonable. Also in the case N ≥ 7, S. Solimini [19] proved that if

t ∈ (0, λ1), problem (1.7) with q = 1 admits infinitely many radial solutions.

In the case N = 4, 5, 6, it has been proved by F. V. Atkinson, H. Brezis and

L. A. Peletier [2] that problem (1.7) with q = 1 does not have a radial solution

which changes sign. Therefore, for the dimension N = 4, 5, 6, Theorems 1.3, 1.4

seem to be false unless the solutions found are identically zero or do not change

sign.

The paper is organized as follows. In Section 2, using Moser type iteration

and taking some ideas from [14], we characterize the asymptotic behavior of

solutions of (1.3) at the origin (cf., Theorem 1.1). In Section 3, we deal with

(1.3) with ǫ > 0, and establish a strong convergence of solutions for (1.3) in

H1
0 (Ω) through concentration estimates (cf., Proposition 3.1), where p ∈ [2, 2∗],

m ∈ (2, 2∗). Section 4 devotes to the proof of Theorem 1.3. We first prove the

existence of infinitely many solutions of

(1.8)







−∆u − µ u
|x|2+ǫ = λu + |u|m−2u + θ|u|2∗−2u in Ω,

u = 0 on∂Ω,

where ǫ, θ > 0. Then if θ > 0 is suitably small, we obtain the desired results by

taking ǫ → 0. In Section 5, we deal with problem (1.7), and also establish the

existence of infinitely many solutions (cf., Theorem 1.4).

Throughout this paper, we denote the norm of H1
0 (Ω) by ‖u‖H1

0(Ω) =

(
∫

Ω |∇u|2dx)1/2; the norm of Ll(Ω)(1 ≤ l < ∞) by ‖u‖Ll(Ω) = (
∫

Ω |u|ldx)
1
l ,

the norm of L∞(Ω) by ‖u‖L∞(Ω) = ess supΩ |u(x)| and positive constants (pos-

sibly different) by C, C1, C2, . . . .

2. Asymptotic behavior of solutions of (1.3)

In this section, we prove Theorem 1.1 by referring to some of the techniques

already developed by Felli–Schneider in [14].

Proof of Theorem 1.1. From the proofs of Theorems 1.1, 1.2 in [14], we can

deduce that if ǫ = 0, |x|
√

µ̄−√
µ̄−µuθ,0(x) is Hölder continuous in Ω, and then
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has a positive lower bound on Bρ0(0) if uθ,0 is positive, which imply that (1.5)

(1.6) hold, where Bρ0(0) ⊂ Ω.

Now we prove that (1.4) holds for ǫ ≥ 0. We need to reveal that the constant

C in (1.4) is independent of θ, ǫ. Set v(x) = |x|
√

µ̄−√
µ̄−µuθ,ǫ(x). By using

Hardy inequality

∫

Ω

|u|2
|x|2 dx ≤ 1

µ̄

∫

Ω

|∇u|2dx for all u ∈ H1
0 (Ω),

we infer that v ∈ H1
0 (Ω, |x|−2(

√
µ̄−√

µ̄−µ)dx) and satisfies

(2.1)

− div
(

|x|−2(
√

µ̄−√
µ̄−µ)∇v

)

= − µǫ
v

(|x|2 + ǫ)|x|2(√µ̄−√
µ̄−µ+1)

+ λ|x|−2(
√

µ̄−√
µ̄−µ)v

+ |x|−m(
√

µ̄−√
µ̄−µ)|v|m−2v + θ|x|−p(

√
µ̄−√

µ̄−µ)|v|p−2v

Choose

ϕ = vv
2(s−1)
l ∈ H1

0 (Ω, |x|−2(
√

µ̄−√
µ̄−µ)dx), s, l > 1, vl = min{|v|, l},

and note that

µǫ

∫

Ω

vϕ

(|x|2 + ǫ)|x|2(√µ̄−√
µ̄−µ+1)

= µǫ

∫

Ω

|v|2v2(s−1)
l

(|x|2 + ǫ)|x|2(√µ̄−√
µ̄−µ+1)

≥ 0.

Multiplying both sides (2.1) by ϕ, we conclude

(2.2)
∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)

(

v
2(s−1)
l |∇v|2 + 2(s − 1)v

2(s−1)
l |∇vl|2

)

dx

≤ λ

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx +

∫

Ω

|x|−m(
√

µ̄−√
µ̄−µ)|v|mv

2(s−1)
l dx

+ θ

∫

Ω

|x|−p(
√

µ̄−√
µ̄−µ)|v|pv2(s−1)

l dx

Now we recall Caffarelli–Kohn–Nirenberg’s inequality (see [7, 10, 20]):

(2.3)
(

∫

Ω

|x|−bt|w|tdx

)2/t

≤ Ca,b

∫

Ω

|x|−2a|∇w|2dx for all w ∈ H1
0 (Ω, |x|−2adx),

where −∞ < a < (N − 2)/2, a ≤ b ≤ a + 1, t = 2N
N−2+2(b−a) and Ca,b is a

positive constant depending on a, b.



Vol. 164, 2008 SEMILINEAR ELLIPTIC EQUATIONS 131

In the sequel, we take a = b =
√

µ̄ − √
µ̄ − µ < (N − 2)/2 in (2.3), then

t = 2∗. Choosing w = vvs−1
l in (2.3), together with (2.2), we derive

(2.4)

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

≤ Ca,a

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|∇(vvs−1

l )|2dx

≤ Cλs

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx

+ Cs

∫

Ω

|x|−m(
√

µ̄−√
µ̄−µ)|v|mv

2(s−1)
l dx

+ Cθs

∫

Ω

|x|−p(
√

µ̄−√
µ̄−µ)|v|pv2(s−1)

l dx.

Since 2 < m < 2∗, we can choose t0 > N/2 such that (m − 2)t0 ≤ m. Using

the assumption ‖uθ,ǫ‖Lm(Ω) ≤ K (independent of θ, ǫ), and noting that 2 <

2t0/(t0 − 1) < 2∗ for t0 > N/2. We deduce that for any δ > 0,

(2.5)

∫

Ω

|x|−m(
√

µ̄−√
µ̄−µ)|v|mv

2(s−1)
l dx

≤ ‖uθ,ǫ‖m−2
L(m−2)t0 (Ω)

‖|x|−
√

µ̄+
√

µ̄−µvvs−1
l ‖2

L
2t0

t0−1 (Ω)

≤ Cδ2

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

+ Cδ
−2N

2t0−N

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2
dx.

Inserting (2.5) into (2.4), we get

(2.6)

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

≤ Cλs

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx

+ Csδ2

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

+ Csδ−
2N

2t0−N

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2
dx

+ Cθs

∫

Ω

|x|−p(
√

µ̄−√
µ̄−µ)|v|pv2(s−1)

l dx.
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Taking δ = 1/
√

2Cs in (2.6), we conclude that

(2.7)

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

≤ Csα0

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx

+ Cθs

∫

Ω

|x|−p(
√

µ̄−√
µ̄−µ)|v|pv2(s−1)

l dx,

where α0 = 2t0/(2t0 − N) > 0, C is independent of θ, ǫ.

Choose t1 = N/2, then (p−2)t1 ≤ 2∗ for p ∈ [2, 2∗]. Noting that 2t1/(t1−1) =

2∗, we deduce that

(2.8)

∫

Ω

|x|−p(
√

µ̄−√
µ̄−µ)|v|pv2(s−1)

l dx

≤ ‖uθ,ǫ‖p−2

L(p−2)t1 (Ω)
‖|x|−

√
µ̄+

√
µ̄−µvvs−1

l ‖2

L
2t1

t1−1 (Ω)

≤ C‖uθ,ǫ‖p−2

L2∗(Ω)
‖|x|−

√
µ̄+

√
µ̄−µvvs−1

l ‖2
L2∗ (Ω).

Inserting (2.8) into (2.7), we obtain that

(2.9)

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

≤ Csα0

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx

+ Cθs‖uθ,ǫ‖p−2

L2∗(Ω)
‖|x|−

√
µ̄+

√
µ̄−µvvs−1

l ‖2
L2∗(Ω).

Choosing s = m/2 > 1 in (2.9). Then we infer

(2.10)

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vv
m
2 −1

l

∣

∣

2∗

dx

)2/2∗

≤ C

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2( m

2 −1)

l dx

+ Cθ‖uθ,ǫ‖p−2

L2∗(Ω)
‖|x|−

√
µ̄+

√
µ̄−µvv

m
2 −1

l ‖2
L2∗(Ω).

By the assumption θ1/2∗‖uθ,ǫ‖L2∗(Ω) ≤ K (independent of θ, ǫ), then there

exists θK > 0 such that Cθ‖uθ,ǫ‖p−2

L2∗(Ω)
≤ 1/2 for every θ ∈ (0, θK). From
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(2.10), we conclude that

(2.11)
(

∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vv
m
2 −1

l

∣

∣

2∗

dx

)2/2∗

≤ C

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2( m

2 −1)

l dx

≤ C(diamΩ)(m−2)(
√

µ̄−√
µ̄−µ)‖uθ,ǫ‖m

Lm(Ω) ≤ C(N, µ, λ, m),

where C depends on K, but not θ, ǫ.

Therefore, from (2.11), we obtain that by taking the limit l → ∞

(2.12)

∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)|v|m2∗

2 dx ≤ C.

Now we claim that there exists β ∈ (1, m/2) such that

(2.13)

∫

Ω

|uθ,ǫ|β2∗

dx ≤ C where the constant C is independent of θ, ǫ.

In fact, from (2.12) and using Hölder inequality, we deduce for any β ∈ (1, m/2)

(2.14)
∫

Ω

|uθ,ǫ|β2∗

dx =

∫

Ω

|x|−β2∗(
√

µ̄−√
µ̄−µ)|v|β2∗

dx

≤
(

∫

Ω

|x|−β2∗(1−2/m)(1−2β/m)−1(
√

µ̄−√
µ̄−µ)dx

)1−2β/m

×
(

∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)|v|m2∗

2 dx

)2β/m

≤ C

(
∫ R0

0

tN−1−β2∗(1−2/m)(1−2β/m)−1(
√

µ̄−√
µ̄−µ)dt

)1−2β/m

,

where R0 = diam Ω, and C is independent of θ, ǫ.

Note that as β → 1,

N − β2∗(1 − 2/m)(1 − (2β)/m)−1(
√

µ̄ −√
µ̄ − µ)

→ N − 2∗(
√

µ̄ −√
µ̄ − µ) = 2∗

√
µ̄ − µ > 0.

We infer that there exists β ∈ (1, m/2) such that

N − 1 − β2∗(1 − 2/m)(1 − (2β)/m)−1(
√

µ̄ −√
µ̄ − µ) > −1,

and then from (2.14), we get (2.13).
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Set t2 = β2∗/(2∗− 2), then t2 > N/2 and 2t2/(t2 − 1) ∈ (2, 2∗). We conclude

that for any δ > 0,

(2.15)

∫

Ω

|x|−p(
√

µ̄−√
µ̄−µ)|v|pv2(s−1)

l dx

≤ ‖uθ,ǫ‖p−2

L(p−2)t2 (Ω)
‖|x|−

√
µ̄+

√
µ̄−µvvs−1

l ‖2

L
2t2

t2−1 (Ω)

≤ C‖uθ,ǫ‖p−2

Lβ2∗ (Ω)
×

(

δ‖|x|−
√

µ̄+
√

µ̄−µvvs−1
l ‖L2∗(Ω)

+ C(N, t2)δ
− N

2t2−N ‖|x|−
√

µ̄+
√

µ̄−µvvs−1
l ‖L2(Ω)

)2
.

Inserting (2.15) into (2.7), we infer from (2.13)

(2.16)
(

∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

≤ Csδ2

(
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)2/2∗

+ Csα0

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx

+ Csδ−2N/(2t2−N)

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2
dx.

Taking δ = 1/
√

2Cs in (2.16), we conclude that

(2.17)
(

∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)

∣

∣vvs−1
l

∣

∣

2∗

dx

)
2
2∗

≤ Csα

∫

Ω

|x|−2(
√

µ̄−√
µ̄−µ)|v|2v2(s−1)

l dx,

where α = max{α0, 2t2/(2t2 − N)} > 0, and C is independent of θ, ǫ.

Define the sequence sj =
(

2∗/2
)j+1

j = 0, 1, 2, . . ., and take s = sj in (2.17).

Through a standard Moser type iteration procedure, we conclude from (2.13)

and (2.17)

‖vl‖L2sj+1(Ω) ≤ C|Ω|1/2∗(1−1/β)

(
∫

Ω

|uθ,ǫ|β2∗

dx

)1/(β2∗)

≤ C,

where C = C(K) is independent of θ, ǫ.

Note that sj+1 → ∞ as j → ∞. So let j → ∞ in the above inequality, we

infer that ‖vl‖L∞(Ω) ≤ C, and (1.4) can be obtained by taking l → +∞.
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3. H1-strong convergence of solutions for (1.3)

In the next parts, we suppose ǫ > 0. Following the arguments of Theorem 1.1

in [11], we establish strong convergence in H1
0 (Ω) on solutions for (1.3), that is,

Proposition 3.1: Assume that N ≥ 7, µ ≥ 0, λ > 0. Then for any sequence

{up}, which are solutions of (1.3) satisfying ‖up‖H1
0 (Ω) ≤ C for some constant C

independent of p ∈ (2, 2∗), there exists a subsequence of {up}, which converges

strongly in H1
0 (Ω) as p → 2∗.

Before giving the proof of Proposition 3.1, we introduce some notation and

terminology, which can be found in [11].

Let u be a solution of problem (1.3). Set v = |u| (extended by zero out of Ω),

then v ∈ H1(RN ) satisfies

(3.1) −∆v ≤ bv2∗−1 + A,

where A = A(λ, µ, ǫ) > 0 is independent of u, b > 1. In the next, we normalize

b and always take b = 1 in (3.1).

Definition 3.2: {un} ⊂ H1
0 (Ω) is said to be a controlled sequence if each un is a

solution to problem (3.1); a balanced sequence if for some p ∈ (2, 2∗), un solves

problem (1.3) with ǫ > 0.

Let S be the best Sobolev constant defined by

S = inf
u∈H1

0 (Ω)\{0}

∫

Ω
|∇u|2dx

( ∫

Ω |u|2∗dx
)2/2∗

,

which is achieved if and only if Ω = RN by

U(x) =
(N(N − 2))(N−2)/4

(1 + |x|2)(N−2)/2
.

The function U , called an instanton, satisfies

−∆U = U2∗−1 in RN .

Moreover,
∫

RN

|∇U |2dx =

∫

RN

U2∗

dx = SN/2.
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The proof of the following result can be found in [21]:

Let {un} ⊂ H1
0 (Ω) be a Palais–Smale sequence of Iθ,ǫ, which is defined in

(4.2). Then, up to a subsequence, there exist k sequences of mutually diverging

scaling σi
n with respective concentration points xi

n such that as n → ∞

(3.2) un −
k

∑

i=1

(σi
n)(N−2)/2U(σi

n(x − xi
n)) − u∞ −→ 0 strongly in H1

0 (Ω),

where u∞ is a weak solution of problem (1.8).

We call {un} is a concentrating sequence if the limit in (3.2) holds in H1-

strong topology.

The following result is from Lemma 6.2 in [11], which allows us to extract a

concentrating subsequence from a noncompact bounded balanced sequence.

Lemma 3.3: Let {un} ⊂ H1
0 (Ω) be a noncompact bounded balanced sequence.

Then we can always extract a concentrating subsequence from {un}.

Choose a constant C > 0 such that A1
n = B

(C+5)σ
−1/2
n

(xn)\B
Cσ

−1/2
n

(xn) does

not contain any concentration point for sufficiently large n.

Define the thinner subset A2
n = B

(C+4)σ
−1/2
n

(xn)\B
(C+1)σ

−1/2
n

(xn). Then the

following results on the controlled concentrating sequences hold (see [11]):

Lemma 3.4: Let {un} be a controlled concentrating sequence. Then there

exists a tn ∈ [C + 2, C + 3] such that

un(x) ≤ C, for all x ∈ A2
n and

∫

∂B
tnσ

−1/2
n

(xn)

|∇un|2dσ ≤ Cσ−(N−3)2
n .

Proof of Proposition 3.1. We prove Proposition 3.1 by contradiction. Assume

the bounded balanced sequence {up} is not compact. Then by Lemma 3.3,

we can choose a concentrating subsequence of {up}, denoted by {un} with

p = pn < 2∗, pn → 2∗. Thus, to prove the strong convergence in H1
0 (Ω), we

just need to show the bubbles (σi
n)(N−2)/2U(σi

n(x − xi
n)) (1 ≤ i ≤ k) in (3.2)

will not appear in the decomposition of un. Assume ‖un‖H1
0 (Ω) ≤ M , then from

(3.2), we infer that k < ∞. For simplicity, we take σn = σi
n, xn = xi

n. Since

the proof is similar to that of Lemma 6.1 in [11], here we only give a sketch of

it. After a detailed calculation, we have the local Pohozaev identity for {un}
on Bn = B

tnσ
−1/2
n

(xn) ∩ Ω



Vol. 164, 2008 SEMILINEAR ELLIPTIC EQUATIONS 137

(3.3)

θ
( N

pn
− N − 2

2

)

∫

Bn

|un|pndx +
(N

m
− N − 2

2

)

∫

Bn

|un|mdx

+ ǫµ

∫

Bn

|un|2
(|x|2 + ǫ)2

dx + λ

∫

Bn

|un|2dx + µ

∫

Bn

x · x0|un|2
(|x|2 + ǫ)2

dx

=
θ

pn

∫

∂Bn

|un|pn(x − x0) · νdσ +
1

m

∫

∂Bn

|un|m(x − x0) · νdσ

+
1

2

∫

∂Bn

(

λ +
µ

|x|2 + ǫ

)

|un|2(x − x0) · νdσ

+

∫

∂Bn

(∇un · (x − x0))(∇un · ν)dσ − 1

2

∫

∂Bn

|∇un|2(x − x0) · νdσ

+
N

2∗

∫

∂Bn

∇un · νundσ,

where ν is the outward normal to ∂Bn.

Set ∂Bn = ∂iBn ∪ ∂eBn, where ∂iBn = ∂Bn ∩ Ω, ∂eBn = ∂Ω ∩ Bn. As in

[11], if ∂eBn = ∅, we take x0 in (3.3) equal to the concentration point xn; if

∂eBn 6= ∅, we take x0 out of Ω such that

(3.4) d(x0, xn) ≤ 2tnσ
− 1

2
n and ∀x ∈ ∂eBn, ν · (x − x0) < 0.

Hence,

(3.5)

λ

∫

Bn

|un|2dx + µ

∫

Bn

x · x0|un|2
(|x|2 + ǫ)2

dx

= λ

∫

Bn

|un|2dx + µ

∫

Bn

x · (x0 − x)|un|2
(|x|2 + ǫ)2

dx + µ

∫

Bn

|x|2|un|2
(|x|2 + ǫ)2

dx

≥ λ

∫

Bn

|un|2dx − µ

∫

Bn

|x||x0 − x||un|2
(|x|2 + ǫ)2

dx + µ

∫

Bn

|x|2|un|2
(|x|2 + ǫ)2

dx

≥
(

λ − C(µ, ǫ
)

σ−1
n )

∫

Bn

|un|2dx

≥ C(µ, λ, ǫ)

∫

Bn

|un|2dx for large n.

Let B′
n = Bσ−1

n
(xn) and un = u0

n + u1
n + u2

n, where

u1
n = u∞, u2

n =
k

∑

i=1

(σi
n)

N−2
2 U(σi

n(x − xi
n)), u0

n = un − u1
n − u2

n.
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Then we deduce that for n large enough, B′
n ⊂ Bn ∩ Ω and

(3.6)

∫

Bn∩Ω

|un|2dx ≥
∫

B′

n

|un|2dx

≥ 1

2

∫

B′

n

|u2
n|2dx − 2

∫

B′

n

|u1
n|2dx − 2

∫

B′

n

|u0
n|2dx.

After a direct calculation, we have

(3.7)
∫

B′

n

|u2
n|2dx ≥ Cσ−2

n ,

∫

B′

n

|u1
n|2dx ≤ Cσ−N

n ,

∫

B′

n

|u0
n|2dx ≤ C‖u0

n‖2
L2∗(Ω)σ

−2
n .

Note that ‖u0
n‖L2∗ (Ω) → 0 as n → ∞. Inserting (3.7) into (3.6), we get for n

large enough

(3.8)

∫

Bn∩Ω

|un|2dx ≥ Cσ−2
n .

By the choice of x0, as in [11], we only need to consider the right hand side of

(3.3) on ∂iBn. Using Lemma 3.4, we get

(3.9)

θ

pn

∫

∂iBn

|un|pn(x − x0) · νdσ +
1

m

∫

∂iBn

|un|m(x − x0) · νdσ

+
1

2

∫

∂iBn

(

λ +
µ

|x|2 + ǫ

)

|un|2(x − x0) · νdσ

+

∫

∂iBn

(∇un · (x − x0))(∇un · ν)dσ

− 1

2

∫

∂iBn

|∇un|2(x − x0) · νdσ +
N

2∗

∫

∂iBn

∇un · νundσ

≤ C

∫

∂iBn

|(x − x0) · ν|dσ +

∫

∂iBn

|∇un|2|x − x0|dσ

+

(
∫

∂iBn

|∇un|2dσ

)1/2( ∫

∂iBn

|un|2dσ

)1/2

≤ Cσ
−N−2

2
n .

Note that ǫµ
∫

Bn

|un|2
(|x|2+ǫ)2 dx > 0, θ(N/pn − (N − 2)/2)

∫

Bn
|un|pndx > 0 for

pn ∈ (2, 2∗) and (N/m− (N − 2)/2)
∫

Bn
|un|mdx > 0 for m ∈ (2, 2∗) . Inserting

(3.8), (3.9) into (3.3), we obtain

σ−2
n ≤ C(ǫ)σ

− N−2
2

n ,
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which is a contradiction for n large enough due to N ≥ 7. Thus, all of the

bubbles in (3.2) must vanish.

4. Existence of many solutions for (1.1)

In this section, we first introduce some notation (see [21]) and preliminary

lemmas.

Denote the eigenvalues of −∆ in H1
0 (Ω) by 0 < λ1 ≤ λ2 ≤ · · · , and the

corresponding eigenfunctions by e1(x), e2(x), . . .. Then, {ei(x)}∞i=1 consist of

an orthogonal basis in H1
0 (Ω).

It is well-known that the nontrivial solutions of problems (1.3), (1.8) are the

corresponding nonzero critical points of the following energy functionals defined

on H1
0 (Ω) respectively:

(4.1)

I
(p)
θ,ǫ (u) =

1

2

∫

Ω

(

|∇u|2 − µ
|u|2

|x|2 + ǫ
− λ|u|2

)

dx − 1

m

∫

Ω

|u|mdx − θ

p

∫

Ω

|u|pdx,

and

(4.2)

Iθ,ǫ(u) =
1

2

∫

Ω

(

|∇u|2 − µ
|u|2

|x|2 + ǫ
− λ|u|2

)

dx − 1

m

∫

Ω

|u|mdx − θ

2∗

∫

Ω

|u|2∗

dx.

Set Yk :=
⊕k

j=1 ej , Zk :=
⊕∞

j=k ej and

Bk := {u ∈ Yk : ‖u‖H1
0(Ω) ≤ ρk}, Nk := {u ∈ Zk : ‖u‖H1

0(Ω) = rk}

where ρk > rk > 0.

Define

Γk := {γ ∈ C(Bk, H1
0 (Ω)): γ|∂Bk

= id}, ck,θ := inf
γ∈Γk

max
u∈Bk

Iθ,0(γ(u))

ck,θ,ǫ := inf
γ∈Γk

max
u∈Bk

Iθ,ǫ(γ(u)), cn
k,θ,ǫ := inf

γ∈Γk

max
u∈Bk

I
(pn)
θ,ǫ (γ(u)),

bk,θ,ǫ := inf
u∈Nk

Iθ,ǫ(u), bn
k,θ,ǫ := inf

u∈Nk

I
(pn)
θ,ǫ (u),

where pn ∈ (2, 2∗) and pn → 2∗ as n → ∞.

Lemma 4.1: For any ǫ, θ > 0 and positive integer k, lim
n→∞

cn
k,θ,ǫ = ck,θ,ǫ.
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Proof. For any v ∈ H1
0 (Ω),

(4.3) Iθ,ǫ(v) = I
(pn)
θ,ǫ (v) +

θ

pn

∫

Ω

|v|pndx − θ

2∗

∫

Ω

|v|2∗

dx.

Since for s ≥ 0, the function h(s) = θ
pn

spn − θ
2∗

s2∗

attains its maximum value at

s = 1, we have h(s) ≤ θ/pn−θ/2∗ for all s ≥ 0. Therefore, for every v ∈ H1
0 (Ω),

Iθ,ǫ(v) ≤ I
(pn)
θ,ǫ (v) + θ

(

1/pn − 1/2∗
)

|Ω|.

So, for any ǫ > 0 and positive integer k,

(4.4) ck,θ,ǫ = inf
γ∈Γk

sup
u∈Bk

Iθ,ǫ(γ(u)) ≤ lim
n→∞

inf
γ∈Γk

sup
u∈Bk

I
(pn)
θ,ǫ (γ(u)) = lim

n→∞
cn
k,θ,ǫ,

Set

(4.5) F (pn)(v) =
θ

2∗

∫

Ω

|v|2∗

dx − θ

pn

∫

Ω

|v|pndx v ∈ H1
0 (Ω).

Note that id ∈ Γk, we deduce from (4.3), (4.5) that

(4.6) inf
γ∈Γk

sup
u∈Bk

I
(pn)
θ,ǫ (γ(u)) ≤ inf

γ∈Γk

sup
u∈Bk

Iθ,ǫ(γ(u)) + sup
u∈Bk

F (pn)(u).

Since Bk is compact and the functionals F (pn) are equicontinuous on Bk, we

derive that lim
n→∞

sup
u∈Bk

F (pn)(u) → 0. So from (4.6), we get

(4.7)

lim
n−→∞

cn
k,θ,ǫ = lim

n−→∞
inf

γ∈Γk

sup
u∈Bk

I
(pn)
θ,ǫ (γ(u))

≤ lim
n−→∞

inf
γ∈Γk

sup
u∈Bk

Iθ,ǫ(γ(u)) + lim
n−→∞

sup
u∈Bk

F (pn)(u)

= ck,θ,ǫ.

Therefore, from (4.4) and (4.7), we infer that lim
n→∞

cn
k,θ,ǫ = ck,θ,ǫ.

Lemma 4.2: lim
k→∞

ck,θ,ǫ = +∞ for every ǫ, θ > 0.

Proof. It follows from Lemma 4.1 that for every positive integer k, there exists

nk > k such that for any ǫ, θ > 0

(4.8)
∣

∣cnk

k,θ,ǫ − ck,θ,ǫ

∣

∣ < 1/k.

Let δ0 ∈ (0, λ1) be a fixed number. Define

αk := inf
u∈Zk, ‖u‖

L
pnk (Ω)

=1

∫

Ω

(|∇u|2 − δ0|u|2)dx.
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We claim that, up to a subsequence, αk→ +∞ as k→ ∞. In fact, since pnk
< 2∗,

we infer that αk can be achieved by a function vk ∈ Zk,
∫

Ω |vk|pnk dx = 1, which

satisfies

−∆vk = αk|vk|pnk
−2vk + δ0vk.

If αk 9 ∞ as k → ∞, then
∫

Ω |∇vk|2dx ≤ C by the choice of δ0. By using

Theorem 1.1 in [11], we conclude that

(4.9) sup
k

‖vk‖L∞(Ω) ≤ C.

Since vk ∈ Zk, up to a subsequence, we may assume that

vk ⇀ 0 weakly in H1
0 (Ω); vk → 0 a.e. on Ω.

By (4.9) and the dominated convergence theorem, we deduce that

lim
k→∞

∫

Ω

|vk|pnk dx = 0,

which is a contradiction due to
∫

Ω |vk|pnk dx = 1. Thus αk → ∞ as k → ∞.

Note that pnk
∈ (2, 2∗), pnk

→ 2∗ as k → ∞, we may assume m < pnk
for large

k. Then by Young inequality, we have for any u ∈ Zk

I
(pnk

)

θ,ǫ (u) =
1

2

∫

Ω

(

|∇u|2 − µ
|u|2
|x|2

)

dx − 1

m

∫

Ω

|u|mdx − θ

pnk

∫

Ω

|u|pnk dx

− λ

2

∫

Ω

|u|2dx +
µ

2

∫

Ω

( |u|2
|x|2 − |u|2

|x|2 + ǫ

)

dx

≥ C1‖u‖2
H1

0(Ω) − C2α
− pnk

2

k ‖u‖pnk

H1
0(Ω)

− C3.

Choosing rk =
( 2C1α

pnk
/2

k

C2pnk

)
1

pnk
−2 , we obtain that if u ∈ Zk and ‖u‖H1

0(Ω) = rk,

(4.10) I
(pnk

)

θ,ǫ (u) ≥ C1

(

1 − 2

pnk

)(2C1α
pnk

/2

k

C2pnk

)
2

pnk
−2 − C3.

Since we have proved that αk → ∞ as k → ∞, from (4.10), we infer that

bnk

k,θ,ǫ → ∞ as k → ∞. It follows from Theorem 3.5 in [21] that cnk

k,θ,ǫ ≥ bnk

k,θ,ǫ,

and so from (4.8), we get that lim
k→∞

ck,θ,ǫ = lim
k→∞

cnk

k,θ,ǫ = +∞.

Lemma 4.3: limǫ→0 ck,θ,ǫ = ck,θ for any θ > 0 and positive integer k.
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Proof. Observe that for any v ∈ H1
0 (Ω),

(4.11) Iθ,ǫ(v) = Iθ,0(v) +
µ

2

∫

Ω

( |u|2
|x|2 − |u|2

|x|2 + ǫ

)

dx.

Since id ∈ Γk, we have

(4.12)

inf
γ∈Γk

sup
u∈Bk

Iθ,ǫ(γ(u)) ≤ inf
γ∈Γk

sup
u∈Bk

Iθ,0(γ(u)) +
µ

2
sup

u∈Bk

∫

Ω

( |u|2
|x|2 − |u|2

|x|2 + ǫ

)

dx.

Set

Gǫ(u) =

∫

Ω

( |u|2
|x|2 − |u|2

|x|2 + ǫ

)

dx u ∈ Bk.

By the dominated convergence theorem, we infer that for any u ∈ Bk,

limǫ→0 Gǫ(u) = 0. Since Bk is compact and the functionals Gǫ are equicon-

tinuous on Bk, we conclude

lim
ǫ→0

sup
u∈Bk

Gǫ(u) = 0.

Thus we obtain from (4.12) that

(4.13) lim
ǫ→0

ck,θ,ǫ ≤ ck,θ.

On the other hand, since
∫

Ω

( |u|2
|x|2 − |u|2

|x|2+ǫ

)

dx ≥ 0, from (4.11), we infer that

ck,θ ≤ limǫ→0 ck,θ,ǫ. Together with (4.13), we conclude that

lim
ǫ→0

ck,θ,ǫ = ck,θ.

Proof of Theorem 1.3. It is not difficult to verify that the assumptions (A1)–

(A4) of Theorem 3.6 in [21] are satisfied for problem (1.3) with p = pn ∈ (2, 2∗).

So by Theorem 3.6 in [21], we conclude that I
(pn)
θ,ǫ has a sequence of critical

points, denoted by un
k,ǫ. Moreover, cn

k,θ,ǫ = I
(pn)
θ,ǫ (un

k,ǫ). By Lemma 4.1, we

deduce that {un
k,ǫ}∞n=1 is bounded in H1

0 (Ω). Then, by Proposition 3.1, we can

find a subsequence which converges to a solution uk,ǫ of (1.8) at level ck,ǫ. Note

that ck,θ ≤ ck,0. From Lemma 4.3 and the following equality

ck,θ,ǫ = θ(1/2 − 1/2∗)

∫

Ω

|uk,ǫ|2
∗

dx + (1/2 − 1/m)

∫

Ω

|uk,ǫ|mdx,

which implies that

θ
1
2∗ ‖uk,ǫ‖L2∗(Ω) + ‖uk,ǫ‖Lm(Ω) ≤ C(k), where C(k) is independent of θ, ǫ.
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From Theorem 1.1, we infer that there exists θk > 0 such that for every

θ ∈ (0, θk)

(4.14) |uk,ǫ(x)| ≤ C|x|−
√

µ̄+
√

µ̄−µ for all x ∈ Ω\{0},

where C is independent of ǫ.

Thus by Hardy inequality and from the following equality

ck,θ,ǫ =
(1

2
− 1

2∗

)

∫

Ω

(

|∇uk,ǫ|2−µ
|uk,ǫ|2
|x|2 + ǫ

−λ|uk,ǫ|2
)

dx−
( 1

m
− 1

2∗

)

∫

Ω

|uk,ǫ|mdx,

we infer that

(4.15)

∫

Ω

|∇uk,ǫ|2dx ≤ C(k, µ, λ),

and then by Sobolev inequality, we also have

(4.16)

∫

Ω

|uk,ǫ|2
∗

dx ≤ C(k, µ, λ).

From (4.15), up to a subsequence, we may assume that as ǫ → 0,

uk,ǫ ⇀ uk weakly in H1
0 (Ω),

uk,ǫ ⇀ uk weakly in L2∗

(Ω),

uk,ǫ → uk a.e. on Ω.

Then uk ∈ H1
0 (Ω) is a weak solution of (1.1), and we deduce from (1.5) that

|uk(x)| ≤ C|x|−
√

µ̄+
√

µ̄−µ for all x ∈ Ω\{0}.

Together with (4.14), we infer that

|uk,ǫ(x) − uk(x)|2∗ ≤ C|x|−2∗(
√

µ̄−√
µ̄−µ) for all x ∈ Ω\{0},

and
|uk,ǫ(x) − uk(x)|2

|x|2 ≤ C|x|−2−2(
√

µ̄−√
µ̄−µ) for all x ∈ Ω\{0},

where C is independent of ǫ.

After a direct calculation, we infer that
∫

Ω

|x|−2∗(
√

µ̄−√
µ̄−µ)dx ≤ C

∫ R0

0

tN−1−2∗(
√

µ̄−√
µ̄−µ)dt ≤ C,

and
∫

Ω

|x|−2−2(
√

µ̄−√
µ̄−µ)dx ≤ C

∫ R0

0

tN−1−2−2(
√

µ̄−√
µ̄−µ)dt ≤ C.
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Thus by the dominated convergence theorem, we conclude that

(4.17)

lim
ǫ→∞

∫

Ω

|uk,ǫ(x) − uk(x)|2∗

dx = 0 and lim
ǫ→∞

∫

Ω

|uk,ǫ(x) − uk(x)|2
|x|2 = 0.

Since uk,ǫ and uk are solutions of (1.8) and (1.1), respectively, we derive

(4.18)

∫

Ω

|∇(uk,ǫ − uk)|2dx

= µ

∫

Ω

( uk,ǫ

|x|2 + ǫ
− uk

|x|2
)

(uk,ǫ − uk)dx + λ

∫

Ω

|uk,ǫ − uk|2dx

+

∫

Ω

(|uk,ǫ|m−2uk,ǫ − |uk|m−2uk)(uk,ǫ − uk)dx

+ θ

∫

Ω

(|uk,ǫ|2
∗−2uk,ǫ − |uk|2

∗−2uk)(uk,ǫ − uk)dx.

By Hardy’s inequality and (4.15), we get

(4.19)

∣

∣

∣

∣

∫

Ω

( uk,ǫ

|x|2 + ǫ
− uk

|x|2
)

(uk,ǫ − uk)dx

∣

∣

∣

∣

≤
∫

Ω

|uk,ǫ(uk,ǫ − uk)|
|x|2 + ǫ

dx +

∫

Ω

|uk(uk,ǫ − uk)|
|x|2 dx

≤
((

∫

Ω

|uk,ǫ|2
|x|2 dx

)1/2

+

(
∫

Ω

|uk|2
|x|2 dx

)1/2)(
∫

Ω

|uk,ǫ − uk|2
|x|2 dx

)1/2

≤ C
(

‖∇uk,ǫ‖L2(Ω) + ‖∇uk‖L2(Ω)

)

(
∫

Ω

|uk,ǫ − uk|2
|x|2 dx

)1/2

≤ C

(
∫

Ω

|uk,ǫ − uk|2
|x|2 dx

)1/2

.

Hence from (4.17), (4.19), we infer that

(4.20) lim
ǫ→0

∫

Ω

( uk,ǫ

|x|2 + ǫ
− uk

|x|2
)

(uk,ǫ − uk)dx = 0.

It is not difficult to verify from (4.17) that

(4.21) lim
ǫ→0

∫

Ω

(|uk,ǫ|2
∗−2uk,ǫ − |uk|2

∗−2uk)(uk,ǫ − uk)dx = 0,

(4.22)

lim
ǫ→0

∫

Ω

(|uk,ǫ|m−2uk,ǫ − |uk|m−2uk)(uk,ǫ − uk)dx = 0 and

lim
ǫ→0

∫

Ω

|uk,ǫ − uk|2dx = 0.
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Hence, from (4.18), (4.20)–(4.22), we deduce that uk,ǫ → uk strongly in H1
0 (Ω)

as ǫ → 0, and then uk is a critical point of Iθ,0 at the level ck,θ for any θ ∈ (0, θk).

On the other hand, for every k, from Lemmas 4.2, 4.3, we infer that there exists

l > k such that ck,θ 6= cl,θ for any θ > 0. Hence, for any given positive integer

L, there exist k1 < k2 < · · · < kL and θk1 , θk2 , . . . , θkL (see Theorem 1.1) such

that for any θ ∈ (0, θL), cki,θ 6= ckj ,θ and then uki,θ 6= ukj ,θ in Ω for any i 6= j,

i, j = 1, 2, . . . , L, where θL = min{θk1 , θk2 , . . . , θkL}.

5. Existence of infinitely many solutions for (1.7)

In this section, we first establish a strong convergence in H1
0 (Ω) on solutions of

(5.1)







−∆u = |u|p−2u + t|u|q−1u in Ω,

u = 0 on ∂Ω,

where p ∈ (2, 2∗), q ∈ (0, 1) and t > 0. That is,

Proposition 5.1: Assume that N ≥ 7, 4/(N − 2) < q < 1, t > 0. Then

any sequence {up} of solutions of (5.1) with p varying in (2, 2∗) satisfying

‖up‖H1
0(Ω) ≤ C for some constant C independent of p, has a subsequence which

converges strongly in H1
0 (Ω) as p → 2∗.

Before giving the proof of Proposition 5.1, we also introduce some notation

and terminology, which can be found in [11].

Let u be a solution of problem (5.1). Set v = |u| (extended by zero out of Ω),

then v satisfies

(5.2) −∆v ≤ bv2∗−1 + A v ∈ H1(RN ),

where b > 1 is a coefficient constant, A = A(t, q) is a positive constant. By

normalizing, in the next, we assume that b = 1 in (5.2) .

Definition 5.2: {un} ⊂ H1
0 (Ω) is said to be a controlled sequence if each un is

a solution to problem (5.2); a balanced sequence if un solves problem (5.1) for

some p ∈ (2, 2∗).

Now we characterize the representation of Palais–Smale sequences corre-

sponding to (1.7). Since its proof is similar to that of Theorem 8.13 in [21],

we omit its details here.
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Let {un} ⊂ H1
0 (Ω) be a Palais–Smale sequence of the functional correspond-

ing to (1.7). Then, up to subsequence, there exists a positive integer k, k

sequence of mutually diverging scaling σi
n with respective concentration points

xi
n such that as n −→ ∞

(5.3) un −
k

∑

i=1

(σi
n)

N−2
2 U(σi

n(x − xi
n)) − u∞ −→ 0 strongly in H1

0 (Ω),

where u∞ is a weak solution of problem (1.7).

We call {un} is a concentrating sequence if the limit in (5.3) holds.

Lemma 5.3: Let {un} be a controlled concentrating sequence. Then there

exists a tn ∈ [C + 2, C + 3] such that

un(x) ≤ C, ∀x ∈ A2
n and

∫

∂B
tnσ

−
1
2

n

(xn)

|∇un|2dx ≤ Cσ
− N−3

2
n ,

where A2
n is defined in Section 3.

Proof. The proof is the same as those of Proposition 3.1 and Corollary 4.1 in

[11], we omit its details here.

Proof of Proposition 5.1. Similar to the proof of Lemma 6.2 in [11], we also can

select a concentrating subsequence of {up}, denoted by {un} with p = pn < 2∗,

pn → 2∗. Hence, it is sufficient to prove that the bubbles (σi
n)

N−2
2 U(σi

n(x−xi
n))

(1 ≤ i ≤ k) in (5.3) will not appear in the decomposition of un. Since the proof

is similar to that of Lemma 6.1 in [11], here we only give a sketch of it. Set

σn = σi
n, xn = xi

n. Then we have the following local Pohozaev identity for {un}
on Bn = B

tnσ
−1/2
n

(xn) ∩ Ω

(5.4)
(

N

pn
− N − 2

2

)
∫

Bn

|un|pndx + t

(

N

q + 1
− N − 2

2

)
∫

Bn

|un|q+1dx

=
1

pn

∫

∂Bn

|un|pn(x − x0) · νdσ +
t

q + 1

∫

∂Bn

|un|q+1(x − x0) · νdσ

+

∫

∂Bn

(∇un · (x − x0))(∇un · ν)dσ − 1

2

∫

∂Bn

|∇un|2(x − x0) · νdσ

+
N

2∗

∫

∂Bn

∇un · νundσ,

where ν is the outward normal to ∂Bn.
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As in Section 3, set ∂Bn = ∂iBn ∪ ∂eBn, where ∂iBn = ∂Bn ∩ Ω, ∂eBn =

∂Ω∩Bn. As in [11], if ∂eBn = ∅, we take x0 in (5.4) equal to the concentration

point xn; if ∂eBn 6= ∅, we take x0 out of Ω such that

(5.5) d(x0, xn) ≤ 2tnσ
− 1

2
n and for all x ∈ ∂eBn, ν · (x − x0) < 0.

Let B′
n = Bσ−1

n
(xn) and un = u0

n + u1
n + u2

n, where

u1
n = u∞, u2

n =

k
∑

i=1

(σi
n)

N−2
2 U(σi

n(x − xi
n)), u0

n = un − u1
n − u2

n.

Then we deduce for n large enough

(5.6)
∫

Bn∩Ω|un|q+1dx

≥
∫

B′

n

|un|q+1dx ≥
∫

B′

n

(1

2
|u2

n|2 − 2|u1
n|2 − 2|u0

n|2
)

q+1
2

≥
(1

2

)

q+1
2

∫

B′

n

|u2
n|q+1dx − 2

q+1
2

∫

B′

n

|u1
n|q+1dx − 2

q+1
2

∫

B′

n

|u0
n|q+1dx.

After a direct calculation, we have

∫

B′

n

|u2
n|q+1dx ≥ Cσ

(N−2)(q+1)
2 −N

n ,(5.7)

∫

B′

n

|u1
n|q+1dx ≤ Cσ−N

n ,(5.8)

∫

B′

n

|u0
n|q+1dx ≤ C‖u0

n‖q+1

L2∗(Ω)
σ

(N−2)(q+1)
2 −N

n .(5.9)

Note that ‖u0
n‖L2∗ (Ω) → 0 as n → ∞. Inserting (5.7)–(5.9) into (5.6), we get

for n large enough

(5.10)

∫

Bn∩Ω

|un|q+1dx ≥ Cσ
(N−2)(q+1)

2 −N
n .
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As in [11], we only need to consider the right hand side of (5.4) on ∂iBn. From

Lemma 5.3, we get

(5.11)
1

pn

∫

∂iBn

|un|pn(x − x0) · νdσ +
t

q + 1

∫

∂iBn

|un|q+1(x − x0) · νdσ

+

∫

∂iBn

(∇un · (x − x0))(∇un · ν)dσ − 1

2

∫

∂iBn

|∇un|2(x − x0) · νdσ

+
N

2∗

∫

∂iBn

∇un · νundσ

≤ C

∫

∂iBn

|(x − x0) · ν|dσ +

∫

∂iBn

|∇un|2|x − x0|dσ

+

(
∫

∂iBn

|∇un|2dσ

)
1
2
(

∫

∂iBn

|un|2dσ

)
1
2

≤ Cσ
− N−2

2
n .

Note that
(

N
pn

− N−2
2

) ∫

Bn
|un|pndx > 0, for pn ∈ (2, 2∗). Inserting (5.10), (5.11)

into (5.4), we obtain

σ
(N−2)(q+1)

2 −N
n ≤ C(t)σ

− N−2
2

n ,

which is a contradiction for n large enough due to 4/(N − 2) < q < 1. Thus all

of the bubbles in (5.3) can not appear.

The corresponding energy functionals of (1.7), (5.1) are defined as the follow-

ing respectively:

Jt(u) =
1

2

∫

Ω

|∇u|2dx − 1

2∗

∫

Ω

|u|2∗

dx − t

q + 1

∫

Ω

|u|q+1dx u ∈ H1
0 (Ω).

and

J
(p)
t (u) =

1

2

∫

Ω

|∇u|2dx − 1

p

∫

Ω

|u|pdx − t

q + 1

∫

Ω

|u|q+1dx u ∈ H1
0 (Ω)

Set

c̃k := inf
γ∈Γk

max
u∈Bk

Jt(γ(u)), c̃n
k := inf

γ∈Γk

max
u∈Bk

J
(pn)
t (γ(u)),

b̃n
k := inf

u∈Nk

J
(pn)
t (u), Γk := {γ ∈ C(Bk, H1

0 (Ω)) : γ|∂Bk
= id},

where Bk, Nk are given in section 3, pn ∈ (2, 2∗) and pn → 2∗ as n → ∞.

Lemma 5.4: For any positive integer k, limn→∞ c̃n
k = c̃k.
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Proof. For any v ∈ H1
0 (Ω),

Jt(v) = J
(pn)
t (v) +

1

pn

∫

Ω

|v|pndx − 1

2∗

∫

Ω

|v|2∗

dx.

Thus, we infer

(5.12) J
(pn)
t (v) ≤ Jt(v) +

∣

∣

∣

∣

1

pn

∫

Ω

|v|pndx − 1

2∗

∫

Ω

|v|2∗

dx

∣

∣

∣

∣

,

and

(5.13) Jt(v) ≤ J
(pn)
t (v) +

∣

∣

∣

∣

1

pn

∫

Ω

|v|pndx − 1

2∗

∫

Ω

|v|2∗

dx

∣

∣

∣

∣

.

Note that id ∈ Γk, we deduce from (5.12), (5.13) that

(5.14)

inf
γ∈Γk

sup
u∈Bk

J
(pn)
t (γ(u)) ≤ inf

γ∈Γk

sup
u∈Bk

Jt(γ(u))+ sup
u∈Bk

∣

∣

∣

∣

1

pn

∫

Ω

|u|pndx− 1

2∗

∫

Ω

|u|2∗

dx

∣

∣

∣

∣

,

and

(5.15)

inf
γ∈Γk

sup
u∈Bk

Jt(γ(u)) ≤ inf
γ∈Γk

sup
u∈Bk

J
(pn)
t (γ(u))+ sup

u∈Bk

∣

∣

∣

∣

1

pn

∫

Ω

|u|pndx− 1

2∗

∫

Ω

|u|2∗

dx

∣

∣

∣

∣

.

Since Bk is compact and the functionals

H(pn)(u) =

∣

∣

∣

∣

1

pn

∫

Ω

|u|pndx − 1

2∗

∫

Ω

|u|2∗

dx

∣

∣

∣

∣

are equicontinuous on Bk, we derive limn→∞ supu∈Bk
H(pn)(u) → 0. Therefore,

from (5.14), (5.15), we conclude limn→∞ c̃n
k = c̃k.

Lemma 5.5: lim
k→∞

c̃k = +∞.

Proof. It follows from Lemma 5.4 that for every k, there exists an nk > k such

that

(5.16)
∣

∣c̃nk

k − c̃k

∣

∣ < 1/k.

If we assume that limk→∞ c̃k = c < ∞. Then from (5.16), we infer

(5.17) lim
k→∞

c̃nk

k = lim
k→∞

c̃k = c.

Let ǫ0 ∈ (0, λ1) be a fixed number. Define

βk := inf
u∈Zk, ‖u‖

L
pnk (Ω)

=1

∫

Ω

(|∇u|2 − ǫ0|u|2)dx.
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We claim that, up to a subsequence, βk→+∞ as k→ ∞. In fact, since pnk
< 2∗,

we infer that βk can be achieved by a function vk ∈ Zk,
∫

Ω |vk|pnk dx = 1, which

satisfies

−∆vk = βk|vk|pnk
−1vk + ǫ0vk.

If βk 9 ∞ as k → ∞, then
∫

Ω |∇vk|2dx ≤ C by the choice of ǫ0. By using

Theorem 1.1 in [11], we conclude that

(5.18) sup
k

‖vk‖L∞(Ω) ≤ C.

Since vk ∈ Zk, up to a subsequence, we may assume that

vk ⇀ 0 weakly in H1
0 (Ω); vk → 0 a.e. on Ω.

By (5.18) and the dominated convergence theorem, we deduce that

lim
k→∞

∫

Ω

|vk|pnk dx = 0,

which is a contradiction due to
∫

Ω
|vk|pnk dx = 1. Thus βk → ∞ as k → ∞.

Note that q ∈ (0, 1), by Young inequality, we have for any u ∈ Zk

J
(pnk

)
t (u) ≥ C5‖u‖2

H1
0(Ω) − C6α

−pnk
/2

k ‖u‖pnk

H1
0(Ω)

− C7.

Choosing rk =
( 2C5β

pnk
/2

k

C6pnk

)1/(pnk
−2)

, we obtain that if u ∈ Zk and ‖u‖H1
0(Ω) = rk,

(5.19) J
(pnk

)
t (u) ≥ C5

(

1 − 2

pnk

)(2C5β
pnk

/2

k

C6pnk

)2/(pnk
−2)

− C7.

Since we have proved that βk → ∞ as k → ∞, from (5.19), we infer that

b̃nk

k → ∞ as k → ∞. It follows from Theorem 3.5 in [21] that c̃nk

k ≥ b̃nk

k , and

so limk→∞ c̃k = limk→∞ c̃nk

k = +∞.

Proof of Theorem 1.4. Let un
k be a critical point of J

(pn)
t at level c̃n

k . By Lemma

5.4, we deduce that {un
k}∞n=1 is bounded in H1

0 (Ω). Then by Proposition 5.1,

we can find a subsequence which strongly converges to a solution uk of (1.7) in

H1
0 (Ω) at level c̃k. By Lemma 5.5, we obtain infinitely many solutions of (1.7)

with positive energy.
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